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Summary

Surface wave analysis is sometimes used in engineering investigations to obtain ground stiffness profiles by inversed modeling

of dispersion velocities. Since dispersion data may be polarized due to material anisotropy, a thorough understanding of the 

dispersion property is necessary for the accurate reconstruction of inversion models. Based on the general constitutive relation

of stress and strains, the implicit relationship between the phase velocity and azimuthal angle was derived. Results from

numerical modeling demonstrated that material anisotropy could produce dispersion behavior of surface waves. In a material

with transverse isotropy, how the phase velocity varies with depth depends on the azimuthal angle. In particular, the phase 

velocity attends a maximum value at an azimuthal angle 45  and shows dispersive at large azimuthal angle.

Introduction

Seismic anisotropy reflects the dependence of the seismic velocity on the measuring direction and is often used to delineate the

material elastic property. Dispersion reflects the dependence of the wave velocity on frequency or wavelength along a certain

direction, and is often used for Rayleigh waves to characterize the dispersive nature of material. The dispersive behavior of

Rayleigh waves can be shown to result from vertical heterogeneity (Xia et al., 1999, 2000; Park et al., 1999). In reality,

however, the medium may be heterogeneous in both vertical and horizontal directions. The connection between the anisotropy

and dispersion may provide additional insights into the dispersion mechanism of Rayleigh waves. Chang et al. (1995) studied 

the relationships between the measurement direction and Rayleigh wave velocity, based on a laboratory experiment on a 

transversely isotropic Phenolite model using the vertical seismic profile (VSP) method. Dispersion of surface wave was shown

to exist in such a model. A remarkable “wave-splitting” phenomenon occurred when the angle between the measurement

direction and the pole to the phenolite layers was between 30° and 60°. The ray velocity was the maximum at an azimuthal

angle of about 45 . The results of the experiment show that dispersion can possibly be produced by material anisotropy, even no 

lateral hetereogeneity in the material exists along the measurement direction. 

When a field trial is conducted on an anisotropic model, the plane of observation may not coincide with the symmetry plane in 

the three-dimension space. The azimuthal angle of the measurement line in reference to material anisotropy axes, therefore,

becomes a notable factor in the dispersion curve. The goal of this present study is to determine how the directional angle can 

affect the dispersion behavior of Rayleigh waves. The study involved the evaluation of raw dispersion data and model 

construction by inversion. The theoretical relationship between the measurement direction and phase velocity on a generalized 

anisotropic model is presented. The traditional approaches of model construction were examined in the light of possible 

dispersion caused by anisotropic properties of the medium, rather than by vertical heterogeneity only.

The dispersive features of Rayleigh waves in a 2.5-D anisotropic Medium 

The wave equation is based on a transverse isotropy medium (TIM) with a constitutive relationship. TIM is a typical anisotropy

encountered (Bush and Crampin, 1987) whose elastic properties render it easy to treat mathematically. For instance, a 

hexagonal medium can be characterized by 5 independent constants (Thomsen, 1986). For a Cartesian coordinate system, we 

consider waves in the x-z plane. The study space is extended to 2.5-D to facilitate the computation of azimuthal effects of the

azimuthal angle. The constitutive relation based on Hooke’s law has a linear matrix relation: 

ijijij scT                                        (1)
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Anisotropy induced dispersion

where Tij is the stress, Sij the strain, cij the stiffness, and i, j = 1,6. Strains Sij can be expressed by displacements ux, ux and uz

as following: 
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Where the superscript T denoted a matrix transformation.  Eq. (1) can be rewritten as:
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The equation of motion for a particle with body density  in space has a form of Newton’s second law: 

2

2

t

u
T i                                       (4) 

The substitution of (2) and (3) into (4) gives the following form for the vertical component:
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Carcione (1992) proposed the generalized wave potentials, which can be modified as: 
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where v, vP and vs, respectively, denote Rayleigh wave, P-wave and S-wave velocities. The strain Sij has the following relation: 
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Substituting (6) to (8) into (5), the phase velocity has an implicit form:
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The dimensionless parameters p and q are related to P-wave, S-wave, and Rayleigh wave velocities. The phase velocity, in turn, 

is related to other parameters besides the three stiffnesses c13, c35 and c55. The equation /2 zkz reflects the relative depth of 

traveling waves to wavelength. Therefore, the implicit expression demonstrates the dependency of velocity on wave number or 

wavelength, which is the basic feature of dispersion velocities.

Numerical modeling of dispersion curves versus azimuthal angles

Eq. (9) shows the simultaneous alteration of P-wave and S-wave velocities, and Raleigh wave velocities with azimuthal angles 
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Anisotropy induced dispersion

of the survey direction. Both P-wave and S-wave velocities can be calculated by the following formula (Thomsen, 1986): 

)coscossin1()( 42233c
Vp

                                                                                                                          (10) 
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where denotes the angle between the wave vector and the maximum stiffness (normal to the symmetry axis) and c denotes

the original stiffness in the diagnostic model, in which c is the maximum stiffness and denotes x-axis, azimuthal angle 90

coincides with the symmetry axis, as illustrated by Chang et al. (1995). Three stiffnesses in Eq. (9) vary with measuring angles,

as demonstrated by Helbig (1994). 

0

ij

0

11

For the purpose of demonstrating the dispersion behavior of Rayleigh waves propagation in a TIM medium, the model can be 

parameterized as shown by Chang et al (1995). A hexagonal model, for example, is represented by {c11, c33, c13, c44, c53,

c15}={12.617, 8.145, 4.045, 2.031, -1.229} and =1.37. The phase velocities obtained for various azimuthal angle is given in 

Fig. 1, and the variation in Rayleigh wave velocity computed for the same model is shown in Fig. 2. 

As shown in Fig. 1, VP decreases gradually with azimuthal angle but VS attends a maximum velocity at azimuthal angle 45 .
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Figure 1: The anisotropic P-wave and S-wave velocities              Figure 2: The dispersion velocities induced by

                                                 material anisotropy

As shown in Fig. 2, the phase velocities vary both with the azimuthal angle, given by the angle between the measurement

direction and direction of maximum stiffness, and depth. The phase velocity increases with increasing azimuthal angle at the

free surface from 910 m/s at 0° to about 1170 m/s at 45°. At beyond 45 , the phase velocity at the free surface decreases with 

increasing azimuthal angle, such as from 1170 m/s at 45° to 910 m/s at 90°.  How the dispersion of wave velocity with depth 

also varies with the measurement direction. When the angle is less than 50°, the velocities are independent of the depth. Above

50°, the phase velocity actually decreases with increasing depth. At an azimuthal angle of 60°, the phase velocity reduces from

1160 m/s at free surface to about 1100 m/s at a depth of one wavelength. At 90°, the phase velocity reduces from 1160 m/s at 

the free surface to 910 m/s at one-wavelength depth.

In this particular model, the 50° azimuthal angle is the maximum angle along which the phase velocity does not change with 

depth. We call it the watershed angle. However, the fact that Rayleigh waves may travel at more than one velocity agrees with
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Anisotropy induced dispersion

the observation by Chang et al. (1995). 

Discussions

Helbig (1994) pointed out that anisotropy has a number of effects on elastic wave propagation: wavefronts are non-spherical; 

rays are not perpendicular to wavefronts; displacement vectors are not parallel or perpendicular to the normal wavefront. When

Rayleigh waves propagate through an anisotropic media, the particles move in different directional velocities because different

stiffnesses correspond to elastic velocities in space (Hsu and Schoenberg, 1993). Especially, when the azimuthal angle is over 

45 , both P-wave and S-wave velocity decrease with increasing azimuthal angle. Rayleigh wave wavefronts are superimposed 

from overall normal movements and tangent movements. The phase misfits were gradually magnified by the low velocities at a 

point in space, resulting in the obvious dispersive behavior.

The dispersion curves in Fig.2 show the dependency of Rayleigh wave velocity on S-wave velocity. When Rayleigh waves 

travel along the direction of the maximum stress, P-wave velocity is the maximum, both S-wave and Rayleigh wave velocities 

are the minimum. On the contrary, when Rayleigh waves travel at azimuthal angle 45 , the phase velocity arrive the maximum, 

which coincides with the tendency of S-wave velocity. This coincidence between the shear wave and Rayleigh wave velocities

shows the similarity between the TIM medium and isotropic medium.

Conclusion

Theoretical and numerical results presented above demonstrate that the anisotropy in a medium can also result in dispersion of

Rayleigh waves. This effect is likely superposed upon the dispersion induced by vertical heterogeneity of the medium. A 

problem then arises: how can we separate the dispersion arising from material anisotropy and that from vertical heterogeneity?

The conventional approach of model reconstruction, which is based either on a 2-D vertical layered model, may be inadequate 

for a medium with a strong transverse anisotropy.
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