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SUMMARY 

The numerical equivalent source is used in the 
wavenumber domain to correct distortions in potential-field data 
caused by topographic relief. The equivalent source is 
determined iteratively by an accurate forward formula. 
Convergence of the solution is stable and rapid. The approach is 
verified with two synthetic examples and then applied to the 
gravity and aeromagnetic grids for Kansas, each of which 
consists of 205 x 408 points. 

INTRODUCTION 

It is well known that topographic relief at the surface of 
measurement causes distortion of potential-field data due to the 
varying vertical separation of the measurement points from the 
source body. Tsuboi (1%5) refers to the Bouguer anomaly as a 
“station” Bouguer anomaly reduced to sea level and 
distinguishes it from the real Bouguer anomaly at sea level, The 
latter requires a vertical (upward and/or downward) continuation 
of the gravity field onto a common horizontal plane. 

Various methods have been used for distortion 
reduction. Dampney (1969) determined an equivalent source of 
discrete point masses on a horizontal plane from Bouguer 
anomaly measurements on an irregular surface by solving a 
system of simultaneous equations. By studying the condition 
number of the matrix of the system, he found that the 
appropriate depth to equivalent source is related to the station 
spacing. Henderson and Cordell(l971) discussed an approach 
of topographic correction by means of finite harmonic series. 
Syberg (1972) developed continuation operators, which was a 
two-dimensional integral in the wavenumber domain, for 
reducing potential field data from a generalsurface to another 
general surface. Bhattachaxyya and Chan (1977) determined an 
equivalent source by solving a Fredholm integral equation of the 
second kind. Pillcington and Urquhart (1990) determined an 
equivalent source on a mirror image of the observation surface. 
This minor image surface is then replaced by a horizontal plane 
and the corrected anomaly on the corrected datum approximates 
the anomaly caused by the equivalent source on the horizontal 
plane. Kia and Sprowl(l991) calculated a corrected anomaly 
from an ensemble of point-mass-equivalent sources, located at 
an optimum depth, and derived from the iterative solution of the 
Dirichlet boundary-value problem. The optimum depth to the 
source ensemble is determined by maximizing the smoothness of 
the calculated anomaly between the data points. All of these 
approaches require significant computational time(except 
Pilkington and Uxquhart (1990)) when large data sets are 
handled. 

In this study we present a fast and accurate method for 
determining an equivalent source for a large data set measured 
on a topographic surface. Reduction to a horizontal plane is then 
straight-forward. 

THEMETHOD 

We define 

f(2) = F[f(r’)] and f(F) = F-‘[f(i)], 

where F and F-’ are Fourier transform and inverse Fourier 

G/M2.1 

transform of functionf, respectively. Considering the case in 

Figure 1, let g(z) be a gravity anomaly on a given horizontal 

plane E, where i(= k,zX + k&) is the wave vector, and L;, and 

2, are the unit vectors in x and y directions, respectively. The 
anomaly can be written as 

g(i) = 2xGa(E), (1) 

where G is gravitational constant, 42) is an equivalent source 

on the plane E. To apply upward continuation to g ( a), we can 
write 

(2) 

where Z(i) is the vertical distance from observation surface S to 

the plane E, (see Figure l), and r’(= X& + yZJ is the vector of 
coordinates on the x-y plane. 

If Z(r’) is constant, equation (2) is a well-known upward 
continuation expression in the wavenumber domain. We show 

that equation (2) can still be used to calculate g(z) on the 

observation surface S, when Z(7) is not constant, if the 

anomaly g( 2) on the horizontal plane E can be determined. 

Let Z,, be the median distance from the surface Z(?) to 
the plane E, then 

Z(r’) = h(r’) t z,. 

where h(7) is the topographic change relative to Z,. Equation (2) 
can be written as 

g(k) = Z( +xp[ +fIZo][ exp[ -(+V)]) . (3) 

We use a Taylor series to express the term in { } and substitute 

equation (1) for 8(f), then equation (3) can be written as 

g(f) = 2xGu(I?)exp[-~~~Zo]~~ 
__n (4) 

Equation (4) is the basis for th:mduction technique, which is 
also mentioned by Parker (1973), Gusip (1987), Pilkington and 
Urquhart (1990), and Pilkington (1990) in different ways. The 
problem can then be solved if the series converges. Let 

R = maxIa(F then U(gls RA, where A is the area covered I 

by a data set. With H = max(h(r’)(, then 

- Hi’ 
c I I) <Z&ARC n! 

FO 

- exp(-/,?/Z,) = 2nGARz .L. 
n=O > 
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2 Correction of potential-field data 

where 

3 j! 

independently of the value of d. Because we can choose the 
plane E below the observation surface S (Z, > H), the series in 
equation (4) is uniformly convergent over the entire 
wavenumber domain, by the Weierstrass M-test (Whittaker and 
Watson 1962, p. 49). This property is the same as the 
convergence of Parker’s formula (Parker, 1973). 

Based on Poisson’s relation (Dobrin, 1976, p. 483), the 
formula for the magnetic anomaly can be written directly from 
equation (4), 

where ” . ” is the dot product of vectors, 

i = i(k& t k&) + ,/p- f yez, zz is the unit vector in the z 

diction, f’ and rii are the unit vectors of the Earth’s field and 
the magnetization, respectively. 

Equations (4) and (5) allow us to estimate equivalent 

source a(J) (or J(7)) on the plane E from measured anomalies 
on the observation surface S by an iterative method, which is 
described below. 

1) Initialize the equivalent source a(J) (or J(7)) and 

define the depth to a(?) (or J(F)); 
2) Calculate the modeled gravity (or magnetic) anomaly 

from a(?) (or J(Y)) by the formulas (4) (or (5)); 
3) Estimate errors: two errors used to control the iterative 

procedure are an rms error RMS(k) at the kth iteration 

RMS(k) = 
J 

+i(si -u;)’ 
= (6) 

and the maximum deviation MAXD(k) at the kth iteration 

MfiW) = ~$4 - $1, (7) 
where superscript k stands for the kth iteration and subscript i 
for the ith data point; s is the measured anomaly; 11 is modeled 
anomaly calculated by formulas (4) (or (5)); and N is the total 
number of data points. If at an iteration, neither of these errOrs 
are reduced or the RMS reaches the accuracy threshold, the 
iterative procedure will be terminated. Otherwise: 

4) Modify the o(Y) (or J(F)) based on formulas below, 
then go to step 2); 

a,“+’ =l$+(s;-&)/2Xc (orJ~+1=J,~+c(s,--?;i)), (8) 
where s is measured gravity (or magnetic) anomaly; g and T are 
calculated based on formulas (4) and (5), respectively; and C is a 
constant, which is chosen to make the iterations convergent. In 
our experience, C is chosen as 0.1 when J and Tare in the same 
units. These simple formulas of modification are reliable and 
save time

Once the equivalent source on the plane E is determined, 
the field on a horizontal plane (corrected datum) above the plane 
E is the normal upward continuation by formula (2). In this 

case, function Z(r’) is a constant, which is the vertical distance 
from the corrected datum to the plane E. The equivalent source 
can also be used to calculate pseudo-gravity, anomaly migrated 
to pole, directional directives, etc. 

TESTING BY SYNTHETIC MODELS 

The first example is from Xia and Sprowl(l991). A 
point-mass gravity source is buried 100 m directly beneath a 100 
m vertical scarp at the surface. The source has an excess mass of 
lO”kg. The data are a 15 x 15 grid of points, spaced every 100 
m. Figures 2a and 2b plot Bouguer anomaly measured on the 
scarp and taken on a horizontal datum 200 m above the source (Z 

= -100 m), after “normal” data corrections to a common datum 
have been performed. The distortion in the measured anomaly is 
due to the decreased vertical separation between the source body 
and the lower measuring stations. The initial equivalent density 
is set to 0 and the depth to equivalent density is lm (z is positive 
downward). The initial RMS and MAXD errors are 0.316 mGa1 
and 2.358 mGals. After 11 iterations, the RMS and MAXD 
errors between the modeled anomaly caused by the equivalent 
source and the anomaly on the scarp (Figure 2a) are reduced to 
0.009 mGa1 and 0.126 mGa1, respectively. We use the 
equivalent source to calculate the corrected anomaly on the 
datum z = -100 m, which is plotted in Figure 2c. The RMS error 
between the corrected anomaly (Figure 2c) and the true anomaly 
(Figure 2b) is 0.012 mGal. Figure 2d shows the difference 
between Figures 2b and 2c. The maximum and average values 
of correction (here we define the value of correction as the 
difference between the measured data and corrected data on a 
given datum. In this case, they are the difference between 
Figures 2a and 2c), for the example are 1.203 mGals and 0.059 
mGal, respectively. 

Our experience shows that the error caused by this type 
of equivalent source (continuously covered on a plane) is not 
sensitive to the depth of the equivalent source. To confirm this, 
we set the equivalent source at different depths from z = 0.001 
m to 100 m for the example. The results show that the RMS 
error between the corrected and true anomalies on the datum z = 
100 m is in the region 0.01 l- 0.012 mGa1. However, the 

number of iterations increases from 7 to 53 with increasing the 
depth to equivalent source from O.COlm to 1OOm. 

The second example is a rectangular solid buried beneath 
the scarp with inclination = 60”, declination = 30”, and 
magnetization = 4 A/m. The solid is 100 x 100 x 100 min the 
center of the data area and has its top at 50 m depth and its 
bottom at 150 m depth. Figures 3a and 3b show the magnetic 
anomaly on the scarp and on the datum z = -50 m. The initial 
magnetization is set to 0 and the depth to equivalent 
magnetization is 1 m. The initial RMS and MAXD errors are 
I 1.618 nT and 76.580 nT, respectively. The RMS and MAXD 
errors are reduced to 0.490 nT and 3.246 nT, respectively, after 
42 iterations. Figure 3c shows the corrected anomaly on the 
datum z = -50 m. The RMS error and average deviation between 
the corrected anomaly (Figure 3c) and the true anomaly (Figure 
3b) are 2.109 nT and 0.743 nT, respectively. If the corrected 
datum is chosen as z = -100 m, the RMS error and average 
deviation between the corrected anomaly and true anomaly will 
be 0.520 nT and 0.250 nT, respectively. Figure 3d shows the 
difference between Figures 3b and 3c. The maximum and 
average values of correction are 69.159 nT and 2.553 nT, 
respectively. 

POTENTIAL-FIELD DATA IN KANSAS 

hnuer Gravity. There are more than 52,000 gravity 
stations measured on the topographic surface in Kansas. The 
highest point on the topography is 1,23 1.1 m above the sea level 
in western Kansas and the lowest is 215.2 m above the sea level 
in eastern Kansas. We used SURFACE 111 (Sampson, 1989) to 
grid Bouguer gravity data by the kriging method to 1.6 X 1.6 
km. The final gridded data set is 205 x 408 points. The original 
Bouguer anomaly map is shown in Lam and Yarger (1989). 

The initial equivalent density is 0 and the depth to the 
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Correction of potential-field data 3 

equivalent source is set to z = -200 m, just below the lowest 
point. The initial RMS and MAXD errors are 79.9 mGals and 
15 1.1 mGals, respectively. The RMS and MADX errors are 
reduced to 0.1 mGa1 and 1.7 mGals, respectively, after 2 
iterations. In each iteration, the value of the second term in the 
series (4) is about 5 percent of the first term, which means that 
the series (4) converges rapidly. The same thing happens in the 
magnetic case below. We use the equivalent density to calculate 
the corrected Bouguer anomaly on the datum z = -700 m, which 
is shown in Figure 4. The maximum and average values of 
correction are 2.55 mGals and 0.18 mGa1, respectively. The 
calculations took about 4 minutes on a Data General MV 20000. 

Aeromagnetic ano sly There are about 72,OXl line-km 
(8 - 11 data /km ) of aerolgn&ic data in Kansas. The distance 
between the flight line is 3.2 km. The data were measured on 
three different levels, 762.0 m above the sea level in eastern 
Kansas, 914.4 m and 1,371.6 m above the sea level in the east 
part and west part of western Kansas, respectively. There is a 
transition zone about 5 - 15 km wide in about the middle of 
western Kansas, in which the plane changed elevation from 
914.4 m to 1,371.6 m. The elevations in the zone are linearly 
interpolated (Yarger, 1985 and 1989). We used SURFACE III 
(Sampson, 1989) to grid these data by the kriging method to 1.6 
x 1.6 km. The final gridded data set is 205 x 408 points. 
Readers may refer to Yarger et al. (1981) for the original 
aeromagnetic map. The Kansas aeromagnetic map contains a 
constant shift betweem the eastern and western parts due to data 
acquisition factors. This correction constant was subtracted prior 
to equivalent source determination. 

The initial equivalent magnetization is 0 and the 
inclination and declination are chosen as 65” and 7”, 
respectively. The depth to equivalent source is set to 7M) m 
above the sea level (z = -760 m), just below the lowest level of 
the survey. The initial RMS and MAXD errors are 190 nT and 
1,106 nT, respectively. The RMS and MAXD errors are reduced 
to 4 nT and 20 nT, respectively, after 12 iterations. The 
calculations took about 20 minutes on a Data General MV20000. 
We used the equivalent magnetization to calculate the corrected 
anomaly on three different levels, z = -762.0 m , -914.4 m, and 
-1,371.6 m. The results are shown in Table 1. When the 
corrected datum coincides with the one of measurement levels, 
the average value of the corrections is approximately the RMS 
error between the modeled anomaly from the equivalent source 
and measured anomaly, which means no correction preformed to 
the data in this case. Table 1 also shows that the amount of 
correction on the different levels is reasonable. Amount of 
correction increases with amount of vertical distance change. 
Figure 5 shows the corrected aeromagnetic anomaly on the 
datum z = -914.4 m. 

ACKNOWLEDGEMENTS 

The authors wish to thank Don Steeples and Rick Miller 
of Kansas Geological Survey for access to the Survey 
computing system and gravity data base. The authors also 
appreciate the efforts of Esther Price in manuscript preparation. 
One author (JX) thanks Dr. Steeples and Dr. Miller for the 
opportunity to study at the KGS, and the KGS for financial 
support. 

REFERENCES 

Bhattacharyya, B. K., and Chan, K. C., 1977, Reduction of 
magnetic and gravity data on an arbitrary surface acquired 
in a region of high topographic relief: Geophysics, 42, 
1411-1430. 

Dampney, C. N. G., 1969, The equivalent source technique: 

Geophysics, 34, 39-53. 

Dobrin, M. B., 1976, Introduction to geophysical prospecting 
(third edition): McGraw-hill Book Company. 

Gusip, F., 1987, Frequency-domain reduction of potential field 
measurements to a horizontal plane: Geoexpl., 24,87-98. 

Henderson, R. G., and Cordell, L., 1971, Reduction of 
unevenly spaced potential field data to a horizontal plane 
by means of finite harmonic series: Geophysics, 36,856- 
866. 

Lam,C. K., and Yarger, H. L., 1989, State gravity map of 
Kansas: Kansas Geological Survey. Bulletin 226, 185. 
196. 

Parker, R. L., 1973, The rapid calculation of potential 
anomalies: Geophys. J. Roy. Astr. Sot., 31, 447-455. 

Pilkington, M., and Urquhart., W. E. S., 1990, Reduction of 
potential field data to a horizontal plane: Geophysics, 55, 
549-555. 

Pilkington, M., 1990, Private communication. 

Sampson, R., 1989, SURFACE III: Interactive Concepts Inc. 

Syberg, F. J. R., 1972, Potential field continuation between 
general surfaces: Geophys. Prosp., 20,267-282. 

Tsuboi, C., 1965, Calculation of Bouguer anomalies with due 
regard to the anomaly in the vertical gravity gradient: Japan 
Acad. Proc., 41, 386-391. 

Whittaker, E. T., and Watson, G. N., 1962, A course of 
modem analysis: Cambridge University Press, 
Cambridge. 

Xia, J., and Sprowl, D. R., 1991, Correction of topographic 
distortions in gravity data: Geophysics, 56, 537-541. 

Yarger, H. L., Robertson, R. R.,Martin, J. A., Ng, K., Sooby, 
R. L., and Wentland, R. L., 1981, Aeromagnetic map of 
Kansas: Kansas Geological Survey, Map M-16, scale 
1:500,000, color interval 200 nT, contour interval 50 nT. 

Yarger, H. L., 1985, Kansas basement study using spectrally 
filtered aeromagnedc data: in, The Utility of Regional 
Gravity and Magnetic Anomaly Map, W.J.Hinze, ed.: 
Society of Exploration Geophysics: Kansas Geological 
Survey , Open-file Report 83-9,36 p. (1983). 

Yarger, H. L., 1989, Major magnetic features in Kansas and 
their possible geologic significance: Kansas Geological 
Survey, Bulletin 226, 197-213. 

Table 1. Values of correction of the aeromagnetic data on three 
parts of Kansas. 

628 

D
ow

nl
oa

de
d 

07
/0

7/
14

 to
 1

29
.2

37
.1

43
.2

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Fig. 1. Geometry of the plane of the 
equivalent source E and a generic 
observation surface S. 

Otr- I 8 1: 

b 

+ 

12 

- 

d 

IF 
Fig. 2. The point-mass example (Xia and Sprowl, 1991). (a) is 
the Bouguer anomaly on the scarp and (b) is on the horizontal - Fig. 3. The rectangular solid example. (a) is the magnetic 
datum z = -100 m. (c) is the topographically corrected anomaly anomaly on the scat-p and (b) is the magnetic anomaly on the 
on the datum z = -100 m. (d) is the Bouguer anomaly the horizontal datum z = -50 m. (c) is the topographically corrected 
difference between the (b) and (c). The unit in both x and y anomaly on the datum z = -SO m. (d) is the difference between 
directions is one station spacing, 100 m. Contour interval 0.2 the (b) and (c). The unit in both x and y directions is one station 
mGa1 in (a) - (c), and 0.02 mGa1 in (d). spacing, 100 m. Contour interval 10 nT in (a) - (c), S nT in (d). 

Fig. 4. Topographically corrected Bouguer gravity of Kansas on the datum 
700 m above sea level. Coordinates in I and y directions are longitude and 
latitude in degrees. Contour interval is 10 mGals. 

Fig:. 5. Aeromagnetic anomaly of Kansas on the datum 914.4 m above sea 
level. Coordinates in * and)’ directions arc longitude and latitude in 
degrees. Contour interval is 150 nT. 
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